| Record Information |
|---|
| Version | 5.0 |
|---|
| Status | Detected and Quantified |
|---|
| Creation Date | 2008-10-29 12:41:32 UTC |
|---|
| Update Date | 2022-03-07 02:51:03 UTC |
|---|
| HMDB ID | HMDB0011134 |
|---|
| Secondary Accession Numbers | - HMDB0002218
- HMDB02218
- HMDB11134
|
|---|
| Metabolite Identification |
|---|
| Common Name | 5-HETE |
|---|
| Description | 5-hydroxyeicosatetraenoic acid (5-HETE) is an endogenous eicosanoid. 5-HETE is an intermediate in arachidonic acid metabolism. It is converted from 5(S)-HPETE via the enzyme glutathione peroxidase (EC 1.11.1.9)and then converted to 5-OxoETE. It is also involved in the pathway of leukotriene synthesis. In addition, it is a modulator of tubuloglomerular feedback. |
|---|
| Structure | CCCCC\C=C/C\C=C/C\C=C/C=C/[C@@H](O)CCCC(O)=O InChI=1S/C20H32O3/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-16-19(21)17-15-18-20(22)23/h6-7,9-10,12-14,16,19,21H,2-5,8,11,15,17-18H2,1H3,(H,22,23)/b7-6-,10-9-,13-12-,16-14+/t19-/m1/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| 5-Hydroxyeicosatetraenoate | Kegg | | (6E,8Z,11Z,14Z)-(5S)-5-Hydroxyicosa-6,8,11,14-tetraenoic acid | Kegg | | 5-Hydroxyeicosatetraenoic acid | Generator | | (6E,8Z,11Z,14Z)-(5S)-5-Hydroxyicosa-6,8,11,14-tetraenoate | Generator | | (5S,6E,8Z,11Z,14Z)-5-Hydroxyeicosa-6,8,11,14-tetraenoic acid | HMDB | | (S)-(e,Z,Z,Z)-5-Hydroxyeicosa-6,8,11,14-tetraenoic acid | HMDB | | 5(S)-Hydroxy-6(e),8(Z),11(Z),14(Z)-eicosatetraenoic acid | HMDB | | 5(S)-Hydroxyeicosatetraenoic acid | HMDB | | 5S-HETE | HMDB | | (5S,6E,8Z,11Z,14Z)-5-Hydroxyeicosa-6,8,11,14-tetraenoate | HMDB | | (S)-(e,Z,Z,Z)-5-Hydroxyeicosa-6,8,11,14-tetraenoate | HMDB | | 5(S)-Hydroxy-6(e),8(Z),11(Z),14(Z)-eicosatetraenoate | HMDB | | 5(S)-Hydroxyeicosatetraenoate | HMDB | | 5(S)-HETE | HMDB | | 5(S)-Hydroxy-6-trans-8,11,14-cis-eicosatetraenoate | HMDB | | 5(S)-Hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid | HMDB | | 5-Hydroxy-6,8,11,14-eicosatetraenoate | HMDB | | 5-Hydroxy-6,8,11,14-eicosatetraenoic acid | HMDB | | 5-L-Hydroxy-6,8,11,14-eicosatetraenoate | HMDB | | 5-L-Hydroxy-6,8,11,14-eicosatetraenoic acid | HMDB | | 5S-Hydroxy-6,8,11,14-eicosatetraenoate | HMDB | | 5S-Hydroxy-6,8,11,14-eicosatetraenoic acid | HMDB | | 5-Hydroxy-6,8,11,14-eicosatetraenoic acid, (e,e,Z,Z)-isomer | HMDB | | 5-Hydroxy-6,8,11,14-eicosatetraenoic acid, (e,Z,Z,Z)-(+-)-isomer | HMDB | | 5-Hydroxy-6,8,11,14-eicosatetraenoic acid, (S)-(e,Z,Z,Z)-isomer | HMDB | | 5-Hydroxy-6,8,11,14-eicosatetraenoic acid, (e,Z,Z,Z)-isomer | HMDB | | 5-Hydroxy-6,8,11,14-eicosatetraenoic acid, R-(e,Z,Z,Z)-isomer | HMDB | | (5S,6E,8Z,11Z,14Z)-5-Hydroxy-6,8,11,14-eicosatetraenoic acid | HMDB | | 5S-Hydroxy-6,8,11,14-(e,Z,Z,Z)-eicosatetraenoic acid | HMDB | | FA(20:4(5-OH,6E,8Z,11Z,14Z)) | HMDB | | FA(20:4(5S-OH,6E,8Z,11Z,14Z)) | HMDB | | 5-HETE | HMDB |
|
|---|
| Chemical Formula | C20H32O3 |
|---|
| Average Molecular Weight | 320.4663 |
|---|
| Monoisotopic Molecular Weight | 320.23514489 |
|---|
| IUPAC Name | (5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoic acid |
|---|
| Traditional Name | 5-hydroxyeicosatetraenoic acid |
|---|
| CAS Registry Number | 70608-72-9 |
|---|
| SMILES | CCCCC\C=C/C\C=C/C\C=C/C=C/[C@@H](O)CCCC(O)=O |
|---|
| InChI Identifier | InChI=1S/C20H32O3/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-16-19(21)17-15-18-20(22)23/h6-7,9-10,12-14,16,19,21H,2-5,8,11,15,17-18H2,1H3,(H,22,23)/b7-6-,10-9-,13-12-,16-14+/t19-/m1/s1 |
|---|
| InChI Key | KGIJOOYOSFUGPC-JGKLHWIESA-N |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as hydroxyeicosatetraenoic acids. These are eicosanoic acids with an attached hydroxyl group and four CC double bonds. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Fatty Acyls |
|---|
| Sub Class | Eicosanoids |
|---|
| Direct Parent | Hydroxyeicosatetraenoic acids |
|---|
| Alternative Parents | |
|---|
| Substituents | - Hydroxyeicosatetraenoic acid
- Long-chain fatty acid
- Hydroxy fatty acid
- Fatty acid
- Unsaturated fatty acid
- Secondary alcohol
- Carboxylic acid derivative
- Carboxylic acid
- Monocarboxylic acid or derivatives
- Organic oxide
- Organic oxygen compound
- Alcohol
- Hydrocarbon derivative
- Carbonyl group
- Organooxygen compound
- Aliphatic acyclic compound
|
|---|
| Molecular Framework | Aliphatic acyclic compounds |
|---|
| External Descriptors | |
|---|
| Ontology |
|---|
| Physiological effect | |
|---|
| Disposition | |
|---|
| Process | |
|---|
| Role | |
|---|
| Physical Properties |
|---|
| State | Solid |
|---|
| Experimental Molecular Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Experimental Chromatographic Properties | Experimental Collision Cross Sections |
|---|
| Predicted Molecular Properties | |
|---|
| Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Retention Times Underivatized| Chromatographic Method | Retention Time | Reference |
|---|
| Measured using a Waters Acquity ultraperformance liquid chromatography (UPLC) ethylene-bridged hybrid (BEH) C18 column (100 mm × 2.1 mm; 1.7 μmparticle diameter). Predicted by Afia on May 17, 2022. Predicted by Afia on May 17, 2022. | 7.07 minutes | 32390414 | | Predicted by Siyang on May 30, 2022 | 22.1424 minutes | 33406817 | | Predicted by Siyang using ReTip algorithm on June 8, 2022 | 0.85 minutes | 32390414 | | AjsUoB = Accucore 150 Amide HILIC with 10mM Ammonium Formate, 0.1% Formic Acid | 34.5 seconds | 40023050 | | Fem_Long = Waters ACQUITY UPLC HSS T3 C18 with Water:MeOH and 0.1% Formic Acid | 3103.9 seconds | 40023050 | | Fem_Lipids = Ascentis Express C18 with (60:40 water:ACN):(90:10 IPA:ACN) and 10mM NH4COOH + 0.1% Formic Acid | 461.5 seconds | 40023050 | | Life_Old = Waters ACQUITY UPLC BEH C18 with Water:(20:80 acetone:ACN) and 0.1% Formic Acid | 207.1 seconds | 40023050 | | Life_New = RP Waters ACQUITY UPLC HSS T3 C18 with Water:(30:70 MeOH:ACN) and 0.1% Formic Acid | 298.7 seconds | 40023050 | | RIKEN = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 640.7 seconds | 40023050 | | Eawag_XBridgeC18 = XBridge C18 3.5u 2.1x50 mm with Water:MeOH and 0.1% Formic Acid | 1040.4 seconds | 40023050 | | BfG_NTS_RP1 =Agilent Zorbax Eclipse Plus C18 (2.1 mm x 150 mm, 3.5 um) with Water:ACN and 0.1% Formic Acid | 570.0 seconds | 40023050 | | HILIC_BDD_2 = Merck SeQuant ZIC-HILIC with ACN(0.1% formic acid):water(16 mM ammonium formate) | 95.7 seconds | 40023050 | | UniToyama_Atlantis = RP Waters Atlantis T3 (2.1 x 150 mm, 5 um) with ACN:Water and 0.1% Formic Acid | 2107.2 seconds | 40023050 | | BDD_C18 = Hypersil Gold 1.9µm C18 with Water:ACN and 0.1% Formic Acid | 699.4 seconds | 40023050 | | UFZ_Phenomenex = Kinetex Core-Shell C18 2.6 um, 3.0 x 100 mm, Phenomenex with Water:MeOH and 0.1% Formic Acid | 1768.4 seconds | 40023050 | | SNU_RIKEN_POS = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 757.6 seconds | 40023050 | | RPMMFDA = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 501.2 seconds | 40023050 | | MTBLS87 = Merck SeQuant ZIC-pHILIC column with ACN:Water and :ammonium carbonate | 330.7 seconds | 40023050 | | KI_GIAR_zic_HILIC_pH2_7 = Merck SeQuant ZIC-HILIC with ACN:Water and 0.1% FA | 502.1 seconds | 40023050 | | Meister zic-pHILIC pH9.3 = Merck SeQuant ZIC-pHILIC column with ACN:Water 5mM NH4Ac pH9.3 and 5mM ammonium acetate in water | 8.6 seconds | 40023050 |
Predicted Kovats Retention IndicesUnderivatizedDerivatized| Derivative Name / Structure | SMILES | Kovats RI Value | Column Type | Reference |
|---|
| 5-HETE,1TMS,isomer #1 | CCCCC/C=C\C/C=C\C/C=C\C=C\[C@H](CCCC(=O)O)O[Si](C)(C)C | 2731.2 | Semi standard non polar | 33892256 | | 5-HETE,1TMS,isomer #2 | CCCCC/C=C\C/C=C\C/C=C\C=C\[C@@H](O)CCCC(=O)O[Si](C)(C)C | 2627.7 | Semi standard non polar | 33892256 | | 5-HETE,2TMS,isomer #1 | CCCCC/C=C\C/C=C\C/C=C\C=C\[C@H](CCCC(=O)O[Si](C)(C)C)O[Si](C)(C)C | 2703.3 | Semi standard non polar | 33892256 | | 5-HETE,1TBDMS,isomer #1 | CCCCC/C=C\C/C=C\C/C=C\C=C\[C@H](CCCC(=O)O)O[Si](C)(C)C(C)(C)C | 2980.9 | Semi standard non polar | 33892256 | | 5-HETE,1TBDMS,isomer #2 | CCCCC/C=C\C/C=C\C/C=C\C=C\[C@@H](O)CCCC(=O)O[Si](C)(C)C(C)(C)C | 2876.9 | Semi standard non polar | 33892256 | | 5-HETE,2TBDMS,isomer #1 | CCCCC/C=C\C/C=C\C/C=C\C=C\[C@H](CCCC(=O)O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C | 3187.2 | Semi standard non polar | 33892256 |
|
|---|
| GC-MS Spectra| Spectrum Type | Description | Splash Key | Deposition Date | Source | View |
|---|
| Predicted GC-MS | Predicted GC-MS Spectrum - 5-HETE GC-MS (Non-derivatized) - 70eV, Positive | splash10-0udr-7293000000-4000067abc9684c2e653 | 2017-09-01 | Wishart Lab | View Spectrum | | Predicted GC-MS | Predicted GC-MS Spectrum - 5-HETE GC-MS (2 TMS) - 70eV, Positive | splash10-056s-9117300000-40397121b4b937950f9d | 2017-10-06 | Wishart Lab | View Spectrum | | Predicted GC-MS | Predicted GC-MS Spectrum - 5-HETE GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | Wishart Lab | View Spectrum |
MS/MS Spectra| Spectrum Type | Description | Splash Key | Deposition Date | Source | View |
|---|
| Experimental LC-MS/MS | LC-MS/MS Spectrum - 5-HETE LC-ESI-QIT , negative-QTOF | splash10-0ldi-0079000000-52dac491931feca303a5 | 2017-09-14 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - 5-HETE LC-ESI-QIT , negative-QTOF | splash10-0pvi-0196000000-b7a43328bfcf1b860873 | 2017-09-14 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - 5-HETE LC-ESI-QIT , negative-QTOF | splash10-1000-0293000000-6e834102b17e5bbec6fc | 2017-09-14 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - 5-HETE LC-ESI-QIT , negative-QTOF | splash10-1000-0390000000-61ebc99aa5f8333b07d2 | 2017-09-14 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - 5-HETE LC-ESI-QIT , negative-QTOF | splash10-03di-1930000000-b877c0d03861ddd2728d | 2017-09-14 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - 5-HETE LC-ESI-QIT , negative-QTOF | splash10-0aor-9620000000-8cfab24155dae08cc2ca | 2017-09-14 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - 5-HETE LC-ESI-QIT , negative-QTOF | splash10-014i-0910000000-90f71c96ff730ececc7c | 2017-09-14 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - 5-HETE LC-ESI-QIT , negative-QTOF | splash10-08fr-4900000000-e0a2e06154c966bbfcc8 | 2017-09-14 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - 5-HETE LC-ESI-QIT , negative-QTOF | splash10-0a4i-9000000000-a54cdd357529bdc9f5e3 | 2017-09-14 | HMDB team, MONA | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 5-HETE 10V, Positive-QTOF | splash10-0uk9-0149000000-eb17d14c7966577fd391 | 2016-08-03 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 5-HETE 20V, Positive-QTOF | splash10-0f79-4693000000-a850cad35b2bb6dbc176 | 2016-08-03 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 5-HETE 40V, Positive-QTOF | splash10-0006-9880000000-8e15d5e341c49c793973 | 2016-08-03 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 5-HETE 10V, Negative-QTOF | splash10-014i-0019000000-eb6fa786699adba566be | 2016-08-03 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 5-HETE 20V, Negative-QTOF | splash10-0ldi-2179000000-3bed63121486cd2b2630 | 2016-08-03 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 5-HETE 40V, Negative-QTOF | splash10-0a4l-9150000000-29ad65a68f2ec87b590f | 2016-08-03 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 5-HETE 10V, Positive-QTOF | splash10-0udr-1549000000-24b83a60315e83b8c15b | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 5-HETE 20V, Positive-QTOF | splash10-0fl9-6943000000-d54f4d6e30d221259591 | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 5-HETE 40V, Positive-QTOF | splash10-05o3-9400000000-745ec239ed811dee9dbd | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 5-HETE 10V, Negative-QTOF | splash10-014i-0009000000-7a32e9e109204e833b16 | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 5-HETE 20V, Negative-QTOF | splash10-0gb9-4149000000-3bac989e03f14b200555 | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 5-HETE 40V, Negative-QTOF | splash10-0k96-9432000000-25aaec361eff0ecf2d57 | 2021-09-24 | Wishart Lab | View Spectrum |
NMR Spectra| Spectrum Type | Description | Deposition Date | Source | View |
|---|
| Predicted 1D NMR | 13C NMR Spectrum (1D, 100 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 200 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 300 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 400 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 500 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 600 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 700 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 800 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 900 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum |
|
|---|
| General References | - Maderna P, Colli S, Caruso D, Eligini S, Toia A, Galli G, Tremoli E: Quantitative changes of hydroxyacid formation during platelet-neutrophil interaction. J Lab Clin Med. 1993 Mar;121(3):406-14. [PubMed:8383163 ]
- Kragballe K, Desjarlais L, Duell EA, Voorhees JJ: In vitro synthesis of 12-hydroxy-eicosatetraenoic acid is increased in uninvolved psoriatic epidermis. J Invest Dermatol. 1986 Jul;87(1):47-52. [PubMed:3088130 ]
- Kanaji K, Okuma M, Sugiyama T, Sensaki S, Ushikubi F, Uchino H: Requirement of free arachidonic acid for leukotriene B4 biosynthesis by 12-hydroperoxyeicosatetraenoic acid-stimulated neutrophils. Biochem Biophys Res Commun. 1986 Jul 31;138(2):589-95. [PubMed:3017333 ]
- Pawlowski NA, Kaplan G, Hamill AL, Cohn ZA, Scott WA: Arachidonic acid metabolism by human monocytes. Studies with platelet-depleted cultures. J Exp Med. 1983 Aug 1;158(2):393-412. [PubMed:6411852 ]
- Sasaki T, Asano T, Takakura K, Sano K, Nakamura T, Suzuki N, Imabayashi S, Ishikawa Y: [Cerebral vasospasm and lipid peroxidation--lipid peroxides in the cerebrospinal fluid after subarachnoid hemorrhage]. No To Shinkei. 1982 Dec;34(12):1191-6. [PubMed:7159548 ]
- Hoffman T, Lizzio EF, Suissa J, Rotrosen D, Sullivan JA, Mandell GL, Bonvini E: Dual stimulation of phospholipase activity in human monocytes. Role of calcium-dependent and calcium-independent pathways in arachidonic acid release and eicosanoid formation. J Immunol. 1988 Jun 1;140(11):3912-8. [PubMed:2836505 ]
- Powell WS, Rokach J: Biochemistry, biology and chemistry of the 5-lipoxygenase product 5-oxo-ETE. Prog Lipid Res. 2005 Mar-May;44(2-3):154-83. Epub 2005 Apr 20. [PubMed:15893379 ]
- Sud'ina GF, Kobel'kov GM, Barskii OA, Varfolomeev SD: [A kinetic scheme of human neutrophil 5-lipoxygenase activity]. Biokhimiia. 1990 Oct;55(10):1795-811. [PubMed:1964097 ]
- Bigby TD, Meslier N: Transcellular lipoxygenase metabolism between monocytes and platelets. J Immunol. 1989 Sep 15;143(6):1948-54. [PubMed:2550547 ]
- Brinkman HJ, van Buul-Wortelboer MF, van Mourik JA: Selective conversion and esterification of monohydroxyeicosatetraenoic acids by human vascular smooth muscle cells: relevance to smooth muscle cell proliferation. Exp Cell Res. 1991 Jan;192(1):87-92. [PubMed:1984423 ]
- Soter NA: The skin in mastocytosis. J Invest Dermatol. 1991 Mar;96(3):32S-38S; discussion 38S-39S. [PubMed:1672136 ]
- Chabannes B, Poubelle PE, Moliere P, De Medicis R, Lussier A, Lagarde M: Platelets abrogate leukotriene B(4) generation by human blood neutrophils stimulated with monosodium urate monohydrate or f-Met-Leu-Phe in vitro. Lab Invest. 2003 Apr;83(4):491-9. [PubMed:12695552 ]
- Hosni M, Meskini N, Prigent AF, Anker G, Joulain C, el Habib R, Lagarde M: Diethyldithiocarbamate (ditiocarb sodium) effect on arachidonic acid metabolism in human mononuclear cells. Glutathione peroxidase-like activity. Biochem Pharmacol. 1992 Mar 17;43(6):1319-29. [PubMed:1314059 ]
- Goetzl EJ: Vitamin E modulates the lipoxygenation of arachidonic acid in leukocytes. Nature. 1980 Nov 13;288(5787):183-5. [PubMed:6253824 ]
- Marcus AJ, Safier LB, Broekman MJ, Ullman HL, Islam N, Sorrell TC, Serhan CN, Weissmann G, Oglesby TD, Gorman RR: Production of metabolic products of arachidonic acid during cell-cell interactions. J Allergy Clin Immunol. 1984 Sep;74(3 Pt 2):338-42. [PubMed:6088611 ]
- Dahinden CA, Clancy RM, Gross M, Chiller JM, Hugli TE: Leukotriene C4 production by murine mast cells: evidence of a role for extracellular leukotriene A4. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6632-6. [PubMed:2995976 ]
- Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
- Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
- Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
- Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
- Elshenawy S, Pinney SE, Stuart T, Doulias PT, Zura G, Parry S, Elovitz MA, Bennett MJ, Bansal A, Strauss JF 3rd, Ischiropoulos H, Simmons RA: The Metabolomic Signature of the Placenta in Spontaneous Preterm Birth. Int J Mol Sci. 2020 Feb 4;21(3). pii: ijms21031043. doi: 10.3390/ijms21031043. [PubMed:32033212 ]
- Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.
|
|---|