| Record Information |
|---|
| Version | 5.0 |
|---|
| Status | Detected and Quantified |
|---|
| Creation Date | 2021-02-24 01:47:11 UTC |
|---|
| Update Date | 2022-10-24 19:44:17 UTC |
|---|
| HMDB ID | HMDB0240773 |
|---|
| Secondary Accession Numbers | None |
|---|
| Metabolite Identification |
|---|
| Common Name | DL-Acetylcarnitine |
|---|
| Description | DL-Acetylcarnitine is an acylcarnitine. More specifically, it is an acetic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279 ). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review (PMID: 35710135 ), acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. DL-Acetylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine DL-Acetylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748 ). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular DL-Acetylcarnitine is elevated in the blood or plasma of individuals with very long chain acyl-CoA dehydrogenase deficiency (PMID: 9034211 ), colorectal cancer (PMID: 25105552 ), short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (PMID: 11489939 ), paclitaxel induced neuropathy (PMID: 29946863 ), type 2 diabetes Mellitus (PMID: 28726959 ; PMID: 25964024 , PMID: 28726959 , PMID: 19369366 , PMID: 24358186 ), chronic heart failure (PMID: 22622056 ), ornithine transcarbamylase (PMID: 3346778 ), pre-diabetes (PMID: 23010998 , PMID: 24358186 ), type 1 diabetes mellitus (PMID: 16789638 ), methylmalonic acidemia (PMID: 8214594 ), myeloma (PMID: 30096165 ), and diastolic heart failure (PMID: 26010610 ). It is also decreased in the blood or plasma of individuals with 3-methyl-crotonyl-glycinuria (PMID: 25732994 ), antiviral drug induced neuropathy (PMID: 9030365 , PMID: 11364244 ), Alzheimer Disease (PMID: 27196316 ), major depressive disorder (PMID: 30061399 ), carnitine palmitoyltransferase 2 deficiency (PMID: 20543534 ), Familial Mediterranean Fever (PMID: 29900937 ), chronic fatigue syndrome (PMID: 9854142 ), methylmalonic acidemia (PMID: 15164354 ), hepatocellular carcinoma (PMID: 26976432 , PMID: 31662827 ), and coronary artery disease (PMID: 20173117 ). DL-Acetylcarnitine is elevated in the urine of individuals with colorectal cancer (25105552 ), uterine fibroids (32590215), heart failure (8070147), diabetes mellitus (10221661), and hepatocellular carcinoma (24923488). It is also decreased in the urine of individuals with carnitine palmitoyltransferase 2 deficiency (20543534 ). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulin's inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774 ). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903 ). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394 ). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available (PMID: 35710135 ). |
|---|
| Structure | CC(=O)OC(CC([O-])=O)C[N+](C)(C)C InChI=1S/C9H17NO4/c1-7(11)14-8(5-9(12)13)6-10(2,3)4/h8H,5-6H2,1-4H3 |
|---|
| Synonyms | | Value | Source |
|---|
| 3-(Acetyloxy)-4-(trimethylammonio)butanoate | ChEBI | | Acetyl-DL-carnitine | ChEBI | | Acetylcarnitine | ChEBI | | DL-O-Acetylcarnitine | ChEBI | | 3-(Acetyloxy)-4-(trimethylammonio)butanoic acid | Generator | | (+-)-Acetylcarnitine | HMDB | | (-)-Acetylcarnitine | HMDB | | (R)-Acetylcarnitine | HMDB | | Acetyl-carnitine | HMDB | | Acetyl-L-(-)-carnitine | HMDB | | Acetyl-L-carnitine | HMDB | | ALCAR | HMDB | | L-Carnitine acetyl ester | HMDB | | L-O-Acetylcarnitine | HMDB | | Levocarnitine acetyl | HMDB | | Nicetile | HMDB | | O-Acetyl-L-carnitine | HMDB | | O-Acetylcarnitine | HMDB | | Acetylcarnitine, (R)-isomer | HMDB | | Carnitine, acetyl | HMDB | | Acetyl L carnitine | HMDB | | Medosan | HMDB | | Sigma-tau brand OF acetyl L-carnitine | HMDB | | Acetyl carnitine | HMDB | | Branigen | HMDB | | Glaxo brand OF acetyl L-carnitine | HMDB | | Sigma tau brand OF acetyl L carnitine | HMDB | | Glaxo brand OF acetyl L carnitine | HMDB |
|
|---|
| Chemical Formula | C9H17NO4 |
|---|
| Average Molecular Weight | 203.2356 |
|---|
| Monoisotopic Molecular Weight | 203.115758037 |
|---|
| IUPAC Name | 3-(acetyloxy)-4-(trimethylazaniumyl)butanoate |
|---|
| Traditional Name | alcar |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CC(=O)OC(CC([O-])=O)C[N+](C)(C)C |
|---|
| InChI Identifier | InChI=1S/C9H17NO4/c1-7(11)14-8(5-9(12)13)6-10(2,3)4/h8H,5-6H2,1-4H3 |
|---|
| InChI Key | RDHQFKQIGNGIED-UHFFFAOYSA-N |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as acyl carnitines. These are organic compounds containing a fatty acid with the carboxylic acid attached to carnitine through an ester bond. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Fatty Acyls |
|---|
| Sub Class | Fatty acid esters |
|---|
| Direct Parent | Acyl carnitines |
|---|
| Alternative Parents | |
|---|
| Substituents | - Acyl-carnitine
- Dicarboxylic acid or derivatives
- Tetraalkylammonium salt
- Quaternary ammonium salt
- Carboxylic acid ester
- Carboxylic acid salt
- Carboxylic acid derivative
- Carboxylic acid
- Organic nitrogen compound
- Organooxygen compound
- Organonitrogen compound
- Organic salt
- Hydrocarbon derivative
- Organic oxide
- Organopnictogen compound
- Organic oxygen compound
- Carbonyl group
- Amine
- Aliphatic acyclic compound
|
|---|
| Molecular Framework | Aliphatic acyclic compounds |
|---|
| External Descriptors | |
|---|
| Ontology |
|---|
| Physiological effect | |
|---|
| Disposition | |
|---|
| Process | Not Available |
|---|
| Role | |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Molecular Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Experimental Chromatographic Properties | Not Available |
|---|
| Predicted Molecular Properties | |
|---|
| Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Retention Times Underivatized| Chromatographic Method | Retention Time | Reference |
|---|
| Predicted by Siyang on May 30, 2022 | 9.3997 minutes | 33406817 | | Predicted by Siyang using ReTip algorithm on June 8, 2022 | 6.99 minutes | 32390414 | | Fem_Long = Waters ACQUITY UPLC HSS T3 C18 with Water:MeOH and 0.1% Formic Acid | 565.0 seconds | 40023050 | | Fem_Lipids = Ascentis Express C18 with (60:40 water:ACN):(90:10 IPA:ACN) and 10mM NH4COOH + 0.1% Formic Acid | 232.0 seconds | 40023050 | | Life_Old = Waters ACQUITY UPLC BEH C18 with Water:(20:80 acetone:ACN) and 0.1% Formic Acid | 88.4 seconds | 40023050 | | Life_New = RP Waters ACQUITY UPLC HSS T3 C18 with Water:(30:70 MeOH:ACN) and 0.1% Formic Acid | 159.3 seconds | 40023050 | | RIKEN = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 46.0 seconds | 40023050 | | Eawag_XBridgeC18 = XBridge C18 3.5u 2.1x50 mm with Water:MeOH and 0.1% Formic Acid | 245.3 seconds | 40023050 | | BfG_NTS_RP1 =Agilent Zorbax Eclipse Plus C18 (2.1 mm x 150 mm, 3.5 um) with Water:ACN and 0.1% Formic Acid | 274.2 seconds | 40023050 | | HILIC_BDD_2 = Merck SeQuant ZIC-HILIC with ACN(0.1% formic acid):water(16 mM ammonium formate) | 764.3 seconds | 40023050 | | UniToyama_Atlantis = RP Waters Atlantis T3 (2.1 x 150 mm, 5 um) with ACN:Water and 0.1% Formic Acid | 772.7 seconds | 40023050 | | BDD_C18 = Hypersil Gold 1.9µm C18 with Water:ACN and 0.1% Formic Acid | 54.5 seconds | 40023050 | | UFZ_Phenomenex = Kinetex Core-Shell C18 2.6 um, 3.0 x 100 mm, Phenomenex with Water:MeOH and 0.1% Formic Acid | 1238.4 seconds | 40023050 | | SNU_RIKEN_POS = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 185.6 seconds | 40023050 | | RPMMFDA = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 195.1 seconds | 40023050 | | MTBLS87 = Merck SeQuant ZIC-pHILIC column with ACN:Water and :ammonium carbonate | 512.3 seconds | 40023050 | | KI_GIAR_zic_HILIC_pH2_7 = Merck SeQuant ZIC-HILIC with ACN:Water and 0.1% FA | 367.8 seconds | 40023050 | | Meister zic-pHILIC pH9.3 = Merck SeQuant ZIC-pHILIC column with ACN:Water 5mM NH4Ac pH9.3 and 5mM ammonium acetate in water | 112.7 seconds | 40023050 |
Predicted Kovats Retention IndicesUnderivatized |
|---|
| GC-MS Spectra| Spectrum Type | Description | Splash Key | Deposition Date | Source | View |
|---|
| Predicted GC-MS | Predicted GC-MS Spectrum - DL-Acetylcarnitine GC-MS (Non-derivatized) - 70eV, Positive | splash10-00di-9100000000-c3bf4495e8c4abf714db | 2016-09-22 | Wishart Lab | View Spectrum | | Predicted GC-MS | Predicted GC-MS Spectrum - DL-Acetylcarnitine GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | Wishart Lab | View Spectrum |
MS/MS Spectra| Spectrum Type | Description | Splash Key | Deposition Date | Source | View |
|---|
| Experimental LC-MS/MS | LC-MS/MS Spectrum - DL-Acetylcarnitine Quattro_QQQ 10V, N/A-QTOF (Annotated) | splash10-000i-9200000000-e3a84538f1dadc72bc00 | 2012-07-24 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - DL-Acetylcarnitine Quattro_QQQ 25V, N/A-QTOF (Annotated) | splash10-000i-9000000000-5d5d6858632925cf1c81 | 2012-07-24 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - DL-Acetylcarnitine Quattro_QQQ 40V, N/A-QTOF (Annotated) | splash10-001i-9000000000-b7dbd311ea9af892ad91 | 2012-07-24 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - DL-Acetylcarnitine , positive-QTOF | splash10-0pb9-3930000000-1af0468e51346890699f | 2017-09-14 | HMDB team, MONA | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - DL-Acetylcarnitine 10V, Positive-QTOF | splash10-0udi-0090000000-71230651236adb31fa6f | 2021-09-22 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - DL-Acetylcarnitine 20V, Positive-QTOF | splash10-0f79-9050000000-2a63f200e23202870ebe | 2021-09-22 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - DL-Acetylcarnitine 40V, Positive-QTOF | splash10-000i-9000000000-e9262cbaff8cb4ad0ba6 | 2021-09-22 | Wishart Lab | View Spectrum |
NMR Spectra| Spectrum Type | Description | Deposition Date | Source | View |
|---|
| Predicted 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-25 | Wishart Lab | View Spectrum | | Experimental 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental) | 2012-12-05 | Wishart Lab | View Spectrum |
|
|---|
| General References | - Clayton PT, Eaton S, Aynsley-Green A, Edginton M, Hussain K, Krywawych S, Datta V, Malingre HE, Berger R, van den Berg IE: Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion. J Clin Invest. 2001 Aug;108(3):457-65. [PubMed:11489939 ]
- Minkler PE, Hoppel CL: Quantification of free carnitine, individual short- and medium-chain acylcarnitines, and total carnitine in plasma by high-performance liquid chromatography. Anal Biochem. 1993 Aug 1;212(2):510-8. [PubMed:8214594 ]
- Vernez L, Wenk M, Krahenbuhl S: Determination of carnitine and acylcarnitines in plasma by high-performance liquid chromatography/electrospray ionization ion trap tandem mass spectrometry. Rapid Commun Mass Spectrom. 2004;18(11):1233-8. [PubMed:15164354 ]
- Kuratsune H, Yamaguti K, Lindh G, Evengard B, Takahashi M, Machii T, Matsumura K, Takaishi J, Kawata S, Langstrom B, Kanakura Y, Kitani T, Watanabe Y: Low levels of serum acylcarnitine in chronic fatigue syndrome and chronic hepatitis type C, but not seen in other diseases. Int J Mol Med. 1998 Jul;2(1):51-6. [PubMed:9854142 ]
- Costa CG, Struys EA, Bootsma A, ten Brink HJ, Dorland L, Tavares de Almeida I, Duran M, Jakobs C: Quantitative analysis of plasma acylcarnitines using gas chromatography chemical ionization mass fragmentography. J Lipid Res. 1997 Jan;38(1):173-82. [PubMed:9034211 ]
- Ni Y, Xie G, Jia W: Metabonomics of human colorectal cancer: new approaches for early diagnosis and biomarker discovery. J Proteome Res. 2014 Sep 5;13(9):3857-70. doi: 10.1021/pr500443c. Epub 2014 Aug 14. [PubMed:25105552 ]
- Zordoky BN, Sung MM, Ezekowitz J, Mandal R, Han B, Bjorndahl TC, Bouatra S, Anderson T, Oudit GY, Wishart DS, Dyck JR: Metabolomic fingerprint of heart failure with preserved ejection fraction. PLoS One. 2015 May 26;10(5):e0124844. doi: 10.1371/journal.pone.0124844. eCollection 2015. [PubMed:26010610 ]
- Thomsen JA, Lund AM, Olesen JH, Mohr M, Rasmussen J: Is L-Carnitine Supplementation Beneficial in 3-Methylcrotonyl-CoA Carboxylase Deficiency? JIMD Rep. 2015;21:79-88. doi: 10.1007/8904_2014_393. Epub 2015 Mar 3. [PubMed:25732994 ]
- Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW, Subramaniam S: LMSD: LIPID MAPS structure database. Nucleic Acids Res. 2007 Jan;35(Database issue):D527-32. doi: 10.1093/nar/gkl838. Epub 2006 Nov 10. [PubMed:17098933 ]
- FRITZ IB: Action of carnitine on long chain fatty acid oxidation by liver. Am J Physiol. 1959 Aug;197:297-304. doi: 10.1152/ajplegacy.1959.197.2.297. [PubMed:13825279 ]
- Reuter SE, Evans AM: Carnitine and acylcarnitines: pharmacokinetic, pharmacological and clinical aspects. Clin Pharmacokinet. 2012 Sep 1;51(9):553-72. doi: 10.1007/BF03261931. [PubMed:22804748 ]
- Bruce CR, Hoy AJ, Turner N, Watt MJ, Allen TL, Carpenter K, Cooney GJ, Febbraio MA, Kraegen EW: Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes. 2009 Mar;58(3):550-8. doi: 10.2337/db08-1078. Epub 2008 Dec 10. [PubMed:19073774 ]
- Schooneman MG, Vaz FM, Houten SM, Soeters MR: Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes. 2013 Jan;62(1):1-8. doi: 10.2337/db12-0466. [PubMed:23258903 ]
- Ahmad T, Kelly JP, McGarrah RW, Hellkamp AS, Fiuzat M, Testani JM, Wang TS, Verma A, Samsky MD, Donahue MP, Ilkayeva OR, Bowles DE, Patel CB, Milano CA, Rogers JG, Felker GM, O'Connor CM, Shah SH, Kraus WE: Prognostic Implications of Long-Chain Acylcarnitines in Heart Failure and Reversibility With Mechanical Circulatory Support. J Am Coll Cardiol. 2016 Jan 26;67(3):291-9. doi: 10.1016/j.jacc.2015.10.079. [PubMed:26796394 ]
- Kiykim E, Aktuglu Zeybek AC, Barut K, Zubarioglu T, Cansever MS, Alsancak S, Kasapcopur O: Screening of Free Carnitine and Acylcarnitine Status in Children With Familial Mediterranean Fever. Arch Rheumatol. 2016 Mar 10;31(2):133-138. doi: 10.5606/ArchRheumatol.2016.5696. eCollection 2016 Jun. [PubMed:29900937 ]
- Abu Bakar MH, Sarmidi MR: Association of cultured myotubes and fasting plasma metabolite profiles with mitochondrial dysfunction in type 2 diabetes subjects. Mol Biosyst. 2017 Aug 22;13(9):1838-1853. doi: 10.1039/c7mb00333a. [PubMed:28726959 ]
- Mai M, Tonjes A, Kovacs P, Stumvoll M, Fiedler GM, Leichtle AB: Serum levels of acylcarnitines are altered in prediabetic conditions. PLoS One. 2013 Dec 16;8(12):e82459. doi: 10.1371/journal.pone.0082459. eCollection 2013. [PubMed:24358186 ]
- Shah SH, Bain JR, Muehlbauer MJ, Stevens RD, Crosslin DR, Haynes C, Dungan J, Newby LK, Hauser ER, Ginsburg GS, Newgard CB, Kraus WE: Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ Cardiovasc Genet. 2010 Apr;3(2):207-14. doi: 10.1161/CIRCGENETICS.109.852814. Epub 2010 Feb 19. [PubMed:20173117 ]
- Adams SH, Hoppel CL, Lok KH, Zhao L, Wong SW, Minkler PE, Hwang DH, Newman JW, Garvey WT: Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. J Nutr. 2009 Jun;139(6):1073-81. doi: 10.3945/jn.108.103754. Epub 2009 Apr 15. [PubMed:19369366 ]
- Sun Y, Kim JH, Vangipuram K, Hayes DF, Smith EML, Yeomans L, Henry NL, Stringer KA, Hertz DL: Pharmacometabolomics reveals a role for histidine, phenylalanine, and threonine in the development of paclitaxel-induced peripheral neuropathy. Breast Cancer Res Treat. 2018 Oct;171(3):657-666. doi: 10.1007/s10549-018-4862-3. Epub 2018 Jun 26. [PubMed:29946863 ]
- Ciborowski M, Adamska E, Rusak M, Godzien J, Wilk J, Citko A, Bauer W, Gorska M, Kretowski A: CE-MS-based serum fingerprinting to track evolution of type 2 diabetes mellitus. Electrophoresis. 2015 Sep;36(18):2286-2293. doi: 10.1002/elps.201500021. Epub 2015 Jun 26. [PubMed:25964024 ]
- Ueland T, Svardal A, Oie E, Askevold ET, Nymoen SH, Bjorndal B, Dahl CP, Gullestad L, Berge RK, Aukrust P: Disturbed carnitine regulation in chronic heart failure--increased plasma levels of palmitoyl-carnitine are associated with poor prognosis. Int J Cardiol. 2013 Sep 1;167(5):1892-9. doi: 10.1016/j.ijcard.2012.04.150. Epub 2012 May 22. [PubMed:22622056 ]
- Ohtani Y, Ohyanagi K, Yamamoto S, Matsuda I: Secondary carnitine deficiency in hyperammonemic attacks of ornithine transcarbamylase deficiency. J Pediatr. 1988 Mar;112(3):409-14. doi: 10.1016/s0022-3476(88)80321-4. [PubMed:3346778 ]
- Wang-Sattler R, Yu Z, Herder C, Messias AC, Floegel A, He Y, Heim K, Campillos M, Holzapfel C, Thorand B, Grallert H, Xu T, Bader E, Huth C, Mittelstrass K, Doring A, Meisinger C, Gieger C, Prehn C, Roemisch-Margl W, Carstensen M, Xie L, Yamanaka-Okumura H, Xing G, Ceglarek U, Thiery J, Giani G, Lickert H, Lin X, Li Y, Boeing H, Joost HG, de Angelis MH, Rathmann W, Suhre K, Prokisch H, Peters A, Meitinger T, Roden M, Wichmann HE, Pischon T, Adamski J, Illig T: Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol. 2012;8:615. doi: 10.1038/msb.2012.43. [PubMed:23010998 ]
- Adal E, Koyuncu G, Aydin A, Celebi A, Kavunoglu G, Cam H: Asymptomatic cardiomyopathy in children and adolescents with type 1 diabetes mellitus: association of echocardiographic indicators with duration of diabetes mellitus and metabolic parameters. J Pediatr Endocrinol Metab. 2006 May;19(5):713-26. doi: 10.1515/jpem.2006.19.5.713. [PubMed:16789638 ]
- Steiner N, Muller U, Hajek R, Sevcikova S, Borjan B, Johrer K, Gobel G, Pircher A, Gunsilius E: The metabolomic plasma profile of myeloma patients is considerably different from healthy subjects and reveals potential new therapeutic targets. PLoS One. 2018 Aug 10;13(8):e0202045. doi: 10.1371/journal.pone.0202045. eCollection 2018. [PubMed:30096165 ]
- Famularo G, Moretti S, Marcellini S, Trinchieri V, Tzantzoglou S, Santini G, Longo A, De Simone C: Acetyl-carnitine deficiency in AIDS patients with neurotoxicity on treatment with antiretroviral nucleoside analogues. AIDS. 1997 Feb;11(2):185-90. doi: 10.1097/00002030-199702000-00008. [PubMed:9030365 ]
- James JS: Drug-related neuropathy: low acetylcarnitine levels found. AIDS Treat News. 1997 Feb 21;(No 265):6-7. [PubMed:11364244 ]
- Cristofano A, Sapere N, La Marca G, Angiolillo A, Vitale M, Corbi G, Scapagnini G, Intrieri M, Russo C, Corso G, Di Costanzo A: Serum Levels of Acyl-Carnitines along the Continuum from Normal to Alzheimer's Dementia. PLoS One. 2016 May 19;11(5):e0155694. doi: 10.1371/journal.pone.0155694. eCollection 2016. [PubMed:27196316 ]
- Nasca C, Bigio B, Lee FS, Young SP, Kautz MM, Albright A, Beasley J, Millington DS, Mathe AA, Kocsis JH, Murrough JW, McEwen BS, Rasgon N: Acetyl-l-carnitine deficiency in patients with major depressive disorder. Proc Natl Acad Sci U S A. 2018 Aug 21;115(34):8627-8632. doi: 10.1073/pnas.1801609115. Epub 2018 Jul 30. [PubMed:30061399 ]
- Hori T, Fukao T, Kobayashi H, Teramoto T, Takayanagi M, Hasegawa Y, Yasuno T, Yamaguchi S, Kondo N: Carnitine palmitoyltransferase 2 deficiency: the time-course of blood and urinary acylcarnitine levels during initial L-carnitine supplementation. Tohoku J Exp Med. 2010 Jul;221(3):191-5. doi: 10.1620/tjem.221.191. [PubMed:20543534 ]
- Lu Y, Li N, Gao L, Xu YJ, Huang C, Yu K, Ling Q, Cheng Q, Chen S, Zhu M, Fang J, Chen M, Ong CN: Acetylcarnitine Is a Candidate Diagnostic and Prognostic Biomarker of Hepatocellular Carcinoma. Cancer Res. 2016 May 15;76(10):2912-20. doi: 10.1158/0008-5472.CAN-15-3199. Epub 2016 Mar 14. [PubMed:26976432 ]
- Takaya H, Namisaki T, Kitade M, Shimozato N, Kaji K, Tsuji Y, Nakanishi K, Noguchi R, Fujinaga Y, Sawada Y, Saikawa S, Sato S, Kawaratani H, Moriya K, Akahane T, Yoshiji H: Acylcarnitine: Useful biomarker for early diagnosis of hepatocellular carcinoma in non-steatohepatitis patients. World J Gastrointest Oncol. 2019 Oct 15;11(10):887-897. doi: 10.4251/wjgo.v11.i10.887. [PubMed:31662827 ]
- Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schioth HB: Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev. 2022 Jul;74(3):506-551. doi: 10.1124/pharmrev.121.000408. [PubMed:35710135 ]
|
|---|