| Record Information |
|---|
| Version | 5.0 |
|---|
| Status | Detected and Quantified |
|---|
| Creation Date | 2005-11-16 15:48:42 UTC |
|---|
| Update Date | 2022-07-12 23:05:07 UTC |
|---|
| HMDB ID | HMDB0001085 |
|---|
| Secondary Accession Numbers | - HMDB0005072
- HMDB01085
- HMDB05072
|
|---|
| Metabolite Identification |
|---|
| Common Name | Leukotriene B4 |
|---|
| Description | Leukotriene B4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region, and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by omega-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the omega-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/15-oxo-prostaglandin-13-reductase that form a series of conjugated diene metabolites that have been observed to be excreted in human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a gamma-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before omega-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease. The term leukotriene was coined to indicate the presence of three conjugated double bonds within the 20-carbon structure of arachidonic acid as well as the fact that these compounds were derived from leucocytes such as PMNNs or transformed mast cells. Interestingly, most of the cells known to express 5-LO are of myeloid origin, which includes neutrophils, eosinophils, mast cells, macrophages, basophils, and monocytes. Leukotriene biosynthesis begins with the specific oxidation of arachidonic acid by a free radical mechanism as a consequence of interaction with 5-LO. The first enzymatic step involves the abstraction of a hydrogen atom from C-7 of arachidonate followed by the addition of molecular oxygen to form 5-HpETE (5-hydroperoxyeicosatetraenoic acid). A second enzymatic step is also catalyzed by 5-LO and involves removal of a hydrogen atom from C-10, resulting in the formation of the conjugated triene epoxide LTA4. LTA4 must then be released by 5-LO and encounter either LTA4-H (LTA4 hydrolase) or LTC4-S [LTC4 (leukotriene C4) synthase]. LTA4-H can stereospecifically add water to C-12 while retaining a specific double-bond geometry, leading to LTB4 [leukotriene B4, 5(S),12(R)-dihydroxy-6,8,10,14-(Z,E,E,Z)-eicosatetraenoic acid]. If LTA4 encounters LTC4-S, then the reactive epoxide is opened at C-6 by the thiol anion of glutathione to form the product LTC4 [5(S)-hydroxy-6(R)-S-glutathyionyl-7,9,11,14- (E,E,Z,Z)-eicosatetraenoic acid], essentially a glutathionyl adduct of oxidized arachidonic acid. Both of these terminal leukotrienes are biologically active in that specific GPCRs recognize these chemical structures and receptor recognition initiates complex intracellular signalling cascades. In order for these molecules to serve as lipid mediators, however, they must be released from the biosynthetic cell into the extracellular milieu so that they can encounter the corresponding GPCRs. Surprising features of this cascade include the recognition of the assembly of critical enzymes at the perinuclear region of the cell and even localization of 5-LO within the nucleus of some cells. Under some situations, the budding phagosome has been found to assemble these proteins. Non-enzymatic proteins such as FLAP are now known as critical partners of this protein-machine assembly. An unexpected pathway of leukotriene biosynthesis involves the transfer of the chemically reactive intermediate, LTA4, from the biosynthetic cell followed by conversion into LTB4 or LTC4 by other cells that do not express 5-LO (PMID: 17623009 ). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. |
|---|
| Structure | CCCCC\C=C/C[C@@H](O)\C=C\C=C\C=C/[C@@H](O)CCCC(O)=O InChI=1S/C20H32O4/c1-2-3-4-5-6-9-13-18(21)14-10-7-8-11-15-19(22)16-12-17-20(23)24/h6-11,14-15,18-19,21-22H,2-5,12-13,16-17H2,1H3,(H,23,24)/b8-7+,9-6-,14-10+,15-11-/t18-,19-/m1/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| (5S,12R,6Z,8E,10E,14Z)-5,12-Dihydroxy-6,8,10,14-eicosatetraenoic acid | ChEBI | | (5S,6Z,8E,10E,12R,14Z)-5,12-Dihydroxyeicosa-6,8,10,14-tetraenoic acid | ChEBI | | (S-(R*,s*-(e,Z,e,Z)))-5,12-dihydroxy-6,8,10,14-eicosatetraenoic acid | ChEBI | | 5(S),12(R)-Dihydroxy-6(Z),8(e),10(e),14(Z)-eicosatetraenoic acid | ChEBI | | 5(S),12(R)-Dihydroxy-6(Z),8(e),10(e),14(Z)-icosatetraenoic acid | ChEBI | | 5,12-Dihete | ChEBI | | 5,12-Hete | ChEBI | | 5S,12R-Dihydroxy-6Z,8E,10E,14Z-eicosatetraenoic acid | ChEBI | | LTB4 | ChEBI | | (6Z,8E,10E,14Z)-(5S,12R)-5,12-Dihydroxyeicosa-6,8,10,14-tetraenoate | Kegg | | (6Z,8E,10E,14Z)-(5S,12R)-5,12-Dihydroxyicosa-6,8,10,14-tetraenoate | Kegg | | (5S,12R,6Z,8E,10E,14Z)-5,12-Dihydroxy-6,8,10,14-eicosatetraenoate | Generator | | (5S,6Z,8E,10E,12R,14Z)-5,12-Dihydroxyeicosa-6,8,10,14-tetraenoate | Generator | | (S-(R*,s*-(e,Z,e,Z)))-5,12-dihydroxy-6,8,10,14-eicosatetraenoate | Generator | | 5(S),12(R)-Dihydroxy-6(Z),8(e),10(e),14(Z)-eicosatetraenoate | Generator | | 5(S),12(R)-Dihydroxy-6(Z),8(e),10(e),14(Z)-icosatetraenoate | Generator | | 5S,12R-Dihydroxy-6Z,8E,10E,14Z-eicosatetraenoate | Generator | | (6Z,8E,10E,14Z)-(5S,12R)-5,12-Dihydroxyeicosa-6,8,10,14-tetraenoic acid | Generator | | (6Z,8E,10E,14Z)-(5S,12R)-5,12-Dihydroxyicosa-6,8,10,14-tetraenoic acid | Generator | | 5,12 HETE | HMDB | | 5,12 DiHETE | HMDB | | Leukotriene b-4 | HMDB | | Leukotrienes b | HMDB | | b-4, Leukotriene | HMDB | | Leukotriene b 4 | HMDB | | Leukotriene b | HMDB | | 5,12-Dihydroxy-6,10-trans -8,14-cis -eicosatetraenoate | HMDB | | 5,12-Dihydroxy-6,10-trans -8,14-cis -eicosatetraenoic acid | HMDB | | Leukotriene b4 ethanol solution | HMDB | | (+)-Leukotriene b4 | HMDB | | (5S,12R)-Leukotriene b4 | HMDB | | 5(S),12(R)-Dihydroxy-6-cis,8,10-trans,14-cis-eicosatetraenoic acid | HMDB | | Leucotriene b4 | HMDB | | cis-Leukotriene b4 | HMDB | | Leukotriene B4 | HMDB |
|
|---|
| Chemical Formula | C20H32O4 |
|---|
| Average Molecular Weight | 336.4657 |
|---|
| Monoisotopic Molecular Weight | 336.230059512 |
|---|
| IUPAC Name | (5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoic acid |
|---|
| Traditional Name | leukotriene B4 |
|---|
| CAS Registry Number | 71160-24-2 |
|---|
| SMILES | CCCCC\C=C/C[C@@H](O)\C=C\C=C\C=C/[C@@H](O)CCCC(O)=O |
|---|
| InChI Identifier | InChI=1S/C20H32O4/c1-2-3-4-5-6-9-13-18(21)14-10-7-8-11-15-19(22)16-12-17-20(23)24/h6-11,14-15,18-19,21-22H,2-5,12-13,16-17H2,1H3,(H,23,24)/b8-7+,9-6-,14-10+,15-11-/t18-,19-/m1/s1 |
|---|
| InChI Key | VNYSSYRCGWBHLG-AMOLWHMGSA-N |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as leukotrienes. These are eicosanoids containing a hydroxyl group attached to the aliphatic chain of an arachidonic acid. Leukotrienes have four double bonds, three (and only three) of which are conjugated. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Fatty Acyls |
|---|
| Sub Class | Eicosanoids |
|---|
| Direct Parent | Leukotrienes |
|---|
| Alternative Parents | |
|---|
| Substituents | - Leukotriene
- Hydroxyeicosatetraenoic acid
- Long-chain fatty acid
- Hydroxy fatty acid
- Fatty acid
- Unsaturated fatty acid
- Secondary alcohol
- Monocarboxylic acid or derivatives
- Carboxylic acid
- Carboxylic acid derivative
- Organooxygen compound
- Alcohol
- Hydrocarbon derivative
- Organic oxide
- Organic oxygen compound
- Carbonyl group
- Aliphatic acyclic compound
|
|---|
| Molecular Framework | Aliphatic acyclic compounds |
|---|
| External Descriptors | |
|---|
| Ontology |
|---|
| Physiological effect | Not Available |
|---|
| Disposition | |
|---|
| Process | |
|---|
| Role | |
|---|
| Physical Properties |
|---|
| State | Solid |
|---|
| Experimental Molecular Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Experimental Chromatographic Properties | Experimental Collision Cross Sections |
|---|
| Predicted Molecular Properties | |
|---|
| Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Retention Times Underivatized| Chromatographic Method | Retention Time | Reference |
|---|
| Measured using a Waters Acquity ultraperformance liquid chromatography (UPLC) ethylene-bridged hybrid (BEH) C18 column (100 mm × 2.1 mm; 1.7 μmparticle diameter). Predicted by Afia on May 17, 2022. Predicted by Afia on May 17, 2022. | 6.32 minutes | 32390414 | | Predicted by Siyang on May 30, 2022 | 16.821 minutes | 33406817 | | Predicted by Siyang using ReTip algorithm on June 8, 2022 | 1.1 minutes | 32390414 | | AjsUoB = Accucore 150 Amide HILIC with 10mM Ammonium Formate, 0.1% Formic Acid | 36.1 seconds | 40023050 | | Fem_Long = Waters ACQUITY UPLC HSS T3 C18 with Water:MeOH and 0.1% Formic Acid | 2933.1 seconds | 40023050 | | Fem_Lipids = Ascentis Express C18 with (60:40 water:ACN):(90:10 IPA:ACN) and 10mM NH4COOH + 0.1% Formic Acid | 292.2 seconds | 40023050 | | Life_Old = Waters ACQUITY UPLC BEH C18 with Water:(20:80 acetone:ACN) and 0.1% Formic Acid | 180.7 seconds | 40023050 | | Life_New = RP Waters ACQUITY UPLC HSS T3 C18 with Water:(30:70 MeOH:ACN) and 0.1% Formic Acid | 200.9 seconds | 40023050 | | RIKEN = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 385.6 seconds | 40023050 | | Eawag_XBridgeC18 = XBridge C18 3.5u 2.1x50 mm with Water:MeOH and 0.1% Formic Acid | 748.2 seconds | 40023050 | | BfG_NTS_RP1 =Agilent Zorbax Eclipse Plus C18 (2.1 mm x 150 mm, 3.5 um) with Water:ACN and 0.1% Formic Acid | 482.5 seconds | 40023050 | | HILIC_BDD_2 = Merck SeQuant ZIC-HILIC with ACN(0.1% formic acid):water(16 mM ammonium formate) | 110.9 seconds | 40023050 | | UniToyama_Atlantis = RP Waters Atlantis T3 (2.1 x 150 mm, 5 um) with ACN:Water and 0.1% Formic Acid | 1665.5 seconds | 40023050 | | BDD_C18 = Hypersil Gold 1.9µm C18 with Water:ACN and 0.1% Formic Acid | 583.7 seconds | 40023050 | | UFZ_Phenomenex = Kinetex Core-Shell C18 2.6 um, 3.0 x 100 mm, Phenomenex with Water:MeOH and 0.1% Formic Acid | 1469.8 seconds | 40023050 | | SNU_RIKEN_POS = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 542.3 seconds | 40023050 | | RPMMFDA = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 441.3 seconds | 40023050 | | MTBLS87 = Merck SeQuant ZIC-pHILIC column with ACN:Water and :ammonium carbonate | 315.1 seconds | 40023050 | | KI_GIAR_zic_HILIC_pH2_7 = Merck SeQuant ZIC-HILIC with ACN:Water and 0.1% FA | 329.6 seconds | 40023050 | | Meister zic-pHILIC pH9.3 = Merck SeQuant ZIC-pHILIC column with ACN:Water 5mM NH4Ac pH9.3 and 5mM ammonium acetate in water | 8.5 seconds | 40023050 |
Predicted Kovats Retention IndicesUnderivatizedDerivatized| Derivative Name / Structure | SMILES | Kovats RI Value | Column Type | Reference |
|---|
| Leukotriene B4,1TMS,isomer #1 | CCCCC/C=C\C[C@H](/C=C/C=C/C=C\[C@@H](O)CCCC(=O)O)O[Si](C)(C)C | 3003.9 | Semi standard non polar | 33892256 | | Leukotriene B4,1TMS,isomer #2 | CCCCC/C=C\C[C@@H](O)/C=C/C=C/C=C\[C@H](CCCC(=O)O)O[Si](C)(C)C | 2997.2 | Semi standard non polar | 33892256 | | Leukotriene B4,1TMS,isomer #3 | CCCCC/C=C\C[C@@H](O)/C=C/C=C/C=C\[C@@H](O)CCCC(=O)O[Si](C)(C)C | 2902.7 | Semi standard non polar | 33892256 | | Leukotriene B4,2TMS,isomer #1 | CCCCC/C=C\C[C@H](/C=C/C=C/C=C\[C@H](CCCC(=O)O)O[Si](C)(C)C)O[Si](C)(C)C | 3062.5 | Semi standard non polar | 33892256 | | Leukotriene B4,2TMS,isomer #2 | CCCCC/C=C\C[C@H](/C=C/C=C/C=C\[C@@H](O)CCCC(=O)O[Si](C)(C)C)O[Si](C)(C)C | 2960.7 | Semi standard non polar | 33892256 | | Leukotriene B4,2TMS,isomer #3 | CCCCC/C=C\C[C@@H](O)/C=C/C=C/C=C\[C@H](CCCC(=O)O[Si](C)(C)C)O[Si](C)(C)C | 2958.3 | Semi standard non polar | 33892256 | | Leukotriene B4,3TMS,isomer #1 | CCCCC/C=C\C[C@H](/C=C/C=C/C=C\[C@H](CCCC(=O)O[Si](C)(C)C)O[Si](C)(C)C)O[Si](C)(C)C | 3003.4 | Semi standard non polar | 33892256 | | Leukotriene B4,1TBDMS,isomer #1 | CCCCC/C=C\C[C@H](/C=C/C=C/C=C\[C@@H](O)CCCC(=O)O)O[Si](C)(C)C(C)(C)C | 3251.3 | Semi standard non polar | 33892256 | | Leukotriene B4,1TBDMS,isomer #2 | CCCCC/C=C\C[C@@H](O)/C=C/C=C/C=C\[C@H](CCCC(=O)O)O[Si](C)(C)C(C)(C)C | 3244.7 | Semi standard non polar | 33892256 | | Leukotriene B4,1TBDMS,isomer #3 | CCCCC/C=C\C[C@@H](O)/C=C/C=C/C=C\[C@@H](O)CCCC(=O)O[Si](C)(C)C(C)(C)C | 3148.3 | Semi standard non polar | 33892256 | | Leukotriene B4,2TBDMS,isomer #1 | CCCCC/C=C\C[C@H](/C=C/C=C/C=C\[C@H](CCCC(=O)O)O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C | 3518.0 | Semi standard non polar | 33892256 | | Leukotriene B4,2TBDMS,isomer #2 | CCCCC/C=C\C[C@H](/C=C/C=C/C=C\[C@@H](O)CCCC(=O)O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C | 3449.6 | Semi standard non polar | 33892256 | | Leukotriene B4,2TBDMS,isomer #3 | CCCCC/C=C\C[C@@H](O)/C=C/C=C/C=C\[C@H](CCCC(=O)O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C | 3444.0 | Semi standard non polar | 33892256 | | Leukotriene B4,3TBDMS,isomer #1 | CCCCC/C=C\C[C@H](/C=C/C=C/C=C\[C@H](CCCC(=O)O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C | 3735.9 | Semi standard non polar | 33892256 |
|
|---|
| GC-MS Spectra| Spectrum Type | Description | Splash Key | Deposition Date | Source | View |
|---|
| Predicted GC-MS | Predicted GC-MS Spectrum - Leukotriene B4 GC-MS (Non-derivatized) - 70eV, Positive | splash10-066r-7896000000-60973fb1d8ff05c73e4e | 2016-09-22 | Wishart Lab | View Spectrum | | Predicted GC-MS | Predicted GC-MS Spectrum - Leukotriene B4 GC-MS (3 TMS) - 70eV, Positive | splash10-01rl-9113530000-205b0d713aeb42a9afc2 | 2017-10-06 | Wishart Lab | View Spectrum | | Predicted GC-MS | Predicted GC-MS Spectrum - Leukotriene B4 GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | Wishart Lab | View Spectrum |
MS/MS Spectra| Spectrum Type | Description | Splash Key | Deposition Date | Source | View |
|---|
| Experimental LC-MS/MS | LC-MS/MS Spectrum - Leukotriene B4 LC-ESI-QIT , negative-QTOF | splash10-000i-0419000000-061132d646cd5dd85a1b | 2017-09-14 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - Leukotriene B4 LC-ESI-QIT , negative-QTOF | splash10-00ks-0829000000-7da7ab59ee0d4812767b | 2017-09-14 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - Leukotriene B4 LC-ESI-QIT , negative-QTOF | splash10-0002-0933000000-3fb381ce0f3609a90222 | 2017-09-14 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - Leukotriene B4 LC-ESI-QIT , negative-QTOF | splash10-0udj-0931000000-ccfdaa3226146fe9edc3 | 2017-09-14 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - Leukotriene B4 LC-ESI-QIT , negative-QTOF | splash10-0udj-1940000000-ef988be204f5c54f4b21 | 2017-09-14 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - Leukotriene B4 LC-ESI-QIT , negative-QTOF | splash10-0r00-1910000000-e16cc958487f06dc4287 | 2017-09-14 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - Leukotriene B4 LC-ESI-QIT , negative-QTOF | splash10-0006-6900000000-a356f0334bf220eb54cc | 2017-09-14 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - Leukotriene B4 LC-ESI-QIT , negative-QTOF | splash10-052f-9700000000-66a6a217eba63b4874d1 | 2017-09-14 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - Leukotriene B4 LC-ESI-QIT , negative-QTOF | splash10-0a4l-7900000000-aeb350579ea4a84117d0 | 2017-09-14 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - Leukotriene B4 LC-ESI-QQ , negative-QTOF | splash10-000i-0619000000-dc49d3f4ab097db18f18 | 2017-09-14 | HMDB team, MONA | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Leukotriene B4 10V, Positive-QTOF | splash10-0gb9-0019000000-39d0f0947681f1f7fc37 | 2015-09-14 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Leukotriene B4 20V, Positive-QTOF | splash10-0v4i-5498000000-4599d3006831091f926c | 2015-09-14 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Leukotriene B4 40V, Positive-QTOF | splash10-052f-9450000000-b6647dcbb40f3175983d | 2015-09-14 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Leukotriene B4 10V, Negative-QTOF | splash10-00kr-0029000000-d2d2e17f68f90518361e | 2015-09-15 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Leukotriene B4 20V, Negative-QTOF | splash10-014r-2269000000-1a60fcc2f712b3beea2a | 2015-09-15 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Leukotriene B4 40V, Negative-QTOF | splash10-0a4l-9340000000-edfb4e3fd8a8f4667ead | 2015-09-15 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Leukotriene B4 10V, Negative-QTOF | splash10-000i-0009000000-74962f74765b30de04ac | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Leukotriene B4 20V, Negative-QTOF | splash10-00kr-3659000000-98607094f1fa036e16e2 | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Leukotriene B4 40V, Negative-QTOF | splash10-052f-5191000000-91a6c7d4dfff9bd70967 | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Leukotriene B4 10V, Positive-QTOF | splash10-0uxr-0019000000-bbfb0bde6a04ea9b05bc | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Leukotriene B4 20V, Positive-QTOF | splash10-0udi-3439000000-d8140c418a63ad2159a3 | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Leukotriene B4 40V, Positive-QTOF | splash10-0ar0-9320000000-afb563cb7a2b51e02836 | 2021-09-24 | Wishart Lab | View Spectrum |
NMR Spectra| Spectrum Type | Description | Deposition Date | Source | View |
|---|
| Predicted 1D NMR | 13C NMR Spectrum (1D, 100 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 200 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 300 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 400 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 500 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 600 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 700 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 800 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 900 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | 2022-08-20 | Wishart Lab | View Spectrum |
|
|---|
| Disease References | | Cardiopulmonary bypass |
|---|
- Pearl JM, Manning PB, McNamara JL, Saucier MM, Thomas DW: Effect of modified ultrafiltration on plasma thromboxane B2, leukotriene B4, and endothelin-1 in infants undergoing cardiopulmonary bypass. Ann Thorac Surg. 1999 Oct;68(4):1369-75. [PubMed:10543508 ]
| | Leukotriene C4-Synthesis Deficiency |
|---|
- Mayatepek E, Flock B: Leukotriene C4-synthesis deficiency: a new inborn error of metabolism linked to a fatal developmental syndrome. Lancet. 1998 Nov 7;352(9139):1514-7. [PubMed:9820300 ]
| | Sjögren-Larsson syndrome |
|---|
- Willemsen MA, Rotteveel JJ, de Jong JG, Wanders RJ, IJlst L, Hoffmann GF, Mayatepek E: Defective metabolism of leukotriene B4 in the Sjogren-Larsson syndrome. J Neurol Sci. 2001 Jan 15;183(1):61-7. [PubMed:11166796 ]
| | Aseptic meningitis |
|---|
- Matsuo M, Hamasaki Y, Masuyama T, Ohta M, Miyazaki S: Leukotriene B4 and C4 in cerebrospinal fluid from children with meningitis and febrile seizures. Pediatr Neurol. 1996 Feb;14(2):121-4. [PubMed:8703223 ]
| | Glutathione synthetase deficiency |
|---|
- Mayatepek E, Meissner T, Grobe H: Acute metabolic crisis with extreme deficiency of glutathione in combination with decreased levels of leukotriene C4 in a patient with glutathione synthetase deficiency. J Inherit Metab Dis. 2004;27(2):297-9. [PubMed:15243994 ]
| | Hydrocephalus |
|---|
- Westcott JY, Murphy RC, Stenmark K: Eicosanoids in human ventricular cerebrospinal fluid following severe brain injury. Prostaglandins. 1987 Dec;34(6):877-87. [PubMed:2835791 ]
| | Meningitis |
|---|
- Westcott JY, Murphy RC, Stenmark K: Eicosanoids in human ventricular cerebrospinal fluid following severe brain injury. Prostaglandins. 1987 Dec;34(6):877-87. [PubMed:2835791 ]
|
|
|---|
| General References | - Crocker I, Lawson N, Daniels I, Baker P, Fletcher J: Significance of fatty acids in pregnancy-induced immunosuppression. Clin Diagn Lab Immunol. 1999 Jul;6(4):587-93. [PubMed:10391868 ]
- Emingil G, Coker I, Atilla G, Huseyinov A: Levels of leukotriene B4 and platelet activating factor in gingival crevicular fluid in renal transplant patients receiving cyclosporine A. J Periodontol. 2000 Jan;71(1):50-7. [PubMed:10695938 ]
- Ahmadzadeh N, Shingu M, Nobunaga M, Tawara T: Relationship between leukotriene B4 and immunological parameters in rheumatoid synovial fluids. Inflammation. 1991 Dec;15(6):497-503. [PubMed:1661709 ]
- Lambiase A, Bonini S, Rasi G, Coassin M, Bruscolini A, Bonini S: Montelukast, a leukotriene receptor antagonist, in vernal keratoconjunctivitis associated with asthma. Arch Ophthalmol. 2003 May;121(5):615-20. [PubMed:12742837 ]
- Nathan H, Naveh N, Meyer E: Levels of prostaglandin E2 and leukotriene B4 in tears of vernal conjunctivitis patients during a therapeutic trial with indomethacin. Doc Ophthalmol. 1994;85(3):247-57. [PubMed:7924852 ]
- Yanagisawa Y, Nagai T: [The relationship between serum leukotriene B4 and smoking]. Nihon Eiseigaku Zasshi. 1993 Aug;48(3):698-706. [PubMed:8397308 ]
- Iversen L, Fogh K, Ziboh VA, Kristensen P, Schmedes A, Kragballe K: Leukotriene B4 formation during human neutrophil keratinocyte interactions: evidence for transformation of leukotriene A4 by putative keratinocyte leukotriene A4 hydrolase. J Invest Dermatol. 1993 Mar;100(3):293-8. [PubMed:8382716 ]
- Mancuso P, Nana-Sinkam P, Peters-Golden M: Leukotriene B4 augments neutrophil phagocytosis of Klebsiella pneumoniae. Infect Immun. 2001 Apr;69(4):2011-6. [PubMed:11254552 ]
- Mozalevskii AF, Travianko TD, Iakovlev AA, Smirnova EA, Novikova NP, Sapa IIu: [Content of arachidonic acid metabolites in blood and saliva of children with bronchial asthma]. Ukr Biokhim Zh (1978). 1997 Sep-Dec;69(5-6):162-8. [PubMed:9606840 ]
- Shindo K, Koide K, Fukumura M: Enhancement of leukotriene B4 release in stimulated asthmatic neutrophils by platelet activating factor. Thorax. 1997 Dec;52(12):1024-9. [PubMed:9516893 ]
- Sieunarine K, Lawrence-Brown MM, Goodman MA, Prendergast FJ, Rocchetta S: Plasma levels of the lipid mediators, leukotriene B4 and lyso platelet-activating factor, in intraoperative salvaged blood. Vox Sang. 1992;63(3):168-71. [PubMed:1333134 ]
- Blackburn WD Jr, Heck LW, Loose LD, Eskra JD, Carty TJ: Inhibition of 5-lipoxygenase product formation and polymorphonuclear cell degranulation by tenidap sodium in patients with rheumatoid arthritis. Arthritis Rheum. 1991 Feb;34(2):204-10. [PubMed:1847289 ]
- Soyombo O, Spur BW, Soh C, Lee TH: Structure/activity relationship of leukotriene B4 and its structural analogues in chemotactic, lysosomal-enzyme release and receptor-binding assays. Eur J Biochem. 1993 Nov 15;218(1):59-66. [PubMed:8243477 ]
- Garcia-Pastor P, Randazzo A, Gomez-Paloma L, Alcaraz MJ, Paya M: Effects of petrosaspongiolide M, a novel phospholipase A2 inhibitor, on acute and chronic inflammation. J Pharmacol Exp Ther. 1999 Apr;289(1):166-72. [PubMed:10087000 ]
- Nieminen MM, Moilanen EK, Koskinen MO, Karvonen JI, Tuomisto L, Metsa-Ketela TJ, Vapaatalo H: Inhaled budesonide fails to inhibit the PAF-induced increase in plasma leukotriene B4 in man. Br J Clin Pharmacol. 1992 Jun;33(6):645-52. [PubMed:1327049 ]
- Seyger MM, van Pelt JP, van den Born J, Latijnhouwers MA, de Jong EM: Epicutaneous application of leukotriene B4 induces patterns of tenascin and a heparan sulfate proteoglycan epitope that are typical for psoriatic lesions. Arch Dermatol Res. 1997 May;289(6):331-6. [PubMed:9209678 ]
- Berry KA, Borgeat P, Gosselin J, Flamand L, Murphy RC: Urinary metabolites of leukotriene B4 in the human subject. J Biol Chem. 2003 Jul 4;278(27):24449-60. Epub 2003 Apr 22. [PubMed:12709426 ]
- Pacheco Y, Hosni R, Chabannes B, Gormand F, Moliere P, Grosclaude M, Piperno D, Lagarde M, Perrin-Fayolle M: Leukotriene B4 level in stimulated blood neutrophils and alveolar macrophages from healthy and asthmatic subjects. Effect of beta-2 agonist therapy. Eur J Clin Invest. 1992 Nov;22(11):732-9. [PubMed:1335872 ]
- Bentancur AG, Naveh N, Lancri J, Selah BA, Livneh A: Urine leukotriene B4 in familial Mediterranean fever. Clin Exp Rheumatol. 2004 Jul-Aug;22(4 Suppl 34):S56-8. [PubMed:15515787 ]
- Fogh J, Poulsen LK, Bisgaard H: A specific assay for leukotriene B4 in human whole blood. J Pharmacol Toxicol Methods. 1992 Dec;28(4):185-90. [PubMed:1338371 ]
- Murphy RC, Gijon MA: Biosynthesis and metabolism of leukotrienes. Biochem J. 2007 Aug 1;405(3):379-95. [PubMed:17623009 ]
|
|---|